Symmetric laplacians, quantum density matrices and their Von-Neumann entropy
We show that the (normalized) symmetric Laplacian of a simple graph can be obtained from the partial trace over a pure bipartite quantum state that resides in a bipartite Hilbert space (one part corresponding to the vertices, the other corresponding to the edges). This suggests an interpretation of...
Những tác giả chính: | Simmons, D, Coon, J, Datta, A |
---|---|
Định dạng: | Journal article |
Được phát hành: |
Elsevier
2017
|
Những quyển sách tương tự
-
The von Neumann Theil index: Characterizing graph centralization using the von Neumann index
Bằng: Simmons, D, et al.
Được phát hành: (2018) -
Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians
Bằng: Natália Bebiano, et al.
Được phát hành: (2022-03-01) -
Analysis of Kernel Matrices via the von Neumann Entropy and Its Relation to RVM Performances
Bằng: Lluís A. Belanche-Muñoz, et al.
Được phát hành: (2023-01-01) -
The von Neumann Entropy for Mixed States
Bằng: Jorge A. Anaya-Contreras, et al.
Được phát hành: (2019-01-01) -
The Physical Basis of the Gibbs-von Neumann entropy
Bằng: Maroney, O
Được phát hành: (2007)