Convergence of a finite volume scheme for a system of interacting species with cross-diffusion
In this work we present the convergence of a positivity preserving semi-discrete finite volume scheme for a coupled system of two non-local partial differential equations with cross-diffusion. The key to proving the convergence result is to establish positivity in order to obtain a discrete energy e...
Główni autorzy: | Carrillo de la Plata, J, Filbet, F, Schmidtchen, M |
---|---|
Format: | Journal article |
Język: | English |
Wydane: |
Springer Verlag
2020
|
Podobne zapisy
-
Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations
od: Bailo, R, i wsp.
Wydane: (2020) -
Splitting schemes and segregation in reaction cross-diffusion systems
od: Carrillo, JA, i wsp.
Wydane: (2018) -
A finite-volume scheme for fractional diffusion on bounded domains
od: Bailo, R, i wsp.
Wydane: (2024) -
A finite-volume scheme for fractional diffusion on bounded domains
od: Rafael Bailo, i wsp.
Wydane: (2025-04-01) -
Well-Balanced Finite-Volume Schemes for Hydrodynamic Equations with General Free Energy
od: Carrillo de la Plata, JA, i wsp.
Wydane: (2020)