Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.

Disc degeneration is associated with several changes in the physicochemical environment of intervertebral disc cells. Nucleus pulposus (NP) cells in the center of degenerated discs are exposed to decreased glucose supply, osmolarity, pH, and oxygen levels. To understand the complexity of these inter...

Full description

Bibliographic Details
Main Authors: Neidlinger-Wilke, C, Mietsch, A, Rinkler, C, Wilke, H, Ignatius, A, Urban, J
Format: Journal article
Language:English
Published: 2012
_version_ 1797077777969577984
author Neidlinger-Wilke, C
Mietsch, A
Rinkler, C
Wilke, H
Ignatius, A
Urban, J
author_facet Neidlinger-Wilke, C
Mietsch, A
Rinkler, C
Wilke, H
Ignatius, A
Urban, J
author_sort Neidlinger-Wilke, C
collection OXFORD
description Disc degeneration is associated with several changes in the physicochemical environment of intervertebral disc cells. Nucleus pulposus (NP) cells in the center of degenerated discs are exposed to decreased glucose supply, osmolarity, pH, and oxygen levels. To understand the complexity of these interactions on a cellular level, we designed standardized experiments in which we compared responses to these environmental factors under normal levels with those seen under two different degrees of disc degeneration. We hypothesized that these changes in environmental stimuli influence gene expression of matrix proteins and matrix degrading enzymes and alter their responses to cyclic hydrostatic pressure (HP). Our results suggest that a simulation of degenerative conditions influences the degradation of disc matrix through impairing matrix formation and accelerating matrix resorption via up- or down-regulation of the respective target genes. The greatest effects were seen for decreases in glucose concentration and pH. Low oxygen had little influence. HP had little direct effect but appeared to counteract matrix degradation by reducing or inverting some of the adverse effects of other stimuli. For ongoing in vitro studies, interactions between mechanical stimuli and factors in the physicochemical environment should not be ignored as these could markedly influence results.
first_indexed 2024-03-07T00:22:52Z
format Journal article
id oxford-uuid:7d23a712-4615-4ac0-9b7c-fe71c19aedc0
institution University of Oxford
language English
last_indexed 2024-03-07T00:22:52Z
publishDate 2012
record_format dspace
spelling oxford-uuid:7d23a712-4615-4ac0-9b7c-fe71c19aedc02022-03-26T21:01:38ZInteractions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7d23a712-4615-4ac0-9b7c-fe71c19aedc0EnglishSymplectic Elements at Oxford2012Neidlinger-Wilke, CMietsch, ARinkler, CWilke, HIgnatius, AUrban, JDisc degeneration is associated with several changes in the physicochemical environment of intervertebral disc cells. Nucleus pulposus (NP) cells in the center of degenerated discs are exposed to decreased glucose supply, osmolarity, pH, and oxygen levels. To understand the complexity of these interactions on a cellular level, we designed standardized experiments in which we compared responses to these environmental factors under normal levels with those seen under two different degrees of disc degeneration. We hypothesized that these changes in environmental stimuli influence gene expression of matrix proteins and matrix degrading enzymes and alter their responses to cyclic hydrostatic pressure (HP). Our results suggest that a simulation of degenerative conditions influences the degradation of disc matrix through impairing matrix formation and accelerating matrix resorption via up- or down-regulation of the respective target genes. The greatest effects were seen for decreases in glucose concentration and pH. Low oxygen had little influence. HP had little direct effect but appeared to counteract matrix degradation by reducing or inverting some of the adverse effects of other stimuli. For ongoing in vitro studies, interactions between mechanical stimuli and factors in the physicochemical environment should not be ignored as these could markedly influence results.
spellingShingle Neidlinger-Wilke, C
Mietsch, A
Rinkler, C
Wilke, H
Ignatius, A
Urban, J
Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.
title Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.
title_full Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.
title_fullStr Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.
title_full_unstemmed Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.
title_short Interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells.
title_sort interactions of environmental conditions and mechanical loads have influence on matrix turnover by nucleus pulposus cells
work_keys_str_mv AT neidlingerwilkec interactionsofenvironmentalconditionsandmechanicalloadshaveinfluenceonmatrixturnoverbynucleuspulposuscells
AT mietscha interactionsofenvironmentalconditionsandmechanicalloadshaveinfluenceonmatrixturnoverbynucleuspulposuscells
AT rinklerc interactionsofenvironmentalconditionsandmechanicalloadshaveinfluenceonmatrixturnoverbynucleuspulposuscells
AT wilkeh interactionsofenvironmentalconditionsandmechanicalloadshaveinfluenceonmatrixturnoverbynucleuspulposuscells
AT ignatiusa interactionsofenvironmentalconditionsandmechanicalloadshaveinfluenceonmatrixturnoverbynucleuspulposuscells
AT urbanj interactionsofenvironmentalconditionsandmechanicalloadshaveinfluenceonmatrixturnoverbynucleuspulposuscells