Direct products and profinite completions
Let G be a finitely generated residually finite group and A a finitely generated normal subgroup. Then G and A are naturally embedded in their respective profinite completions and . The inclusion A G induces a morphism (continuous homomorphism) : , and the image of is the closure of A in . If A happ...
Auteurs principaux: | Nikolov, N, Segal, D |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2007
|
Documents similaires
-
Cartesian products as profinite completions
par: Kassabov, M, et autres
Publié: (2006) -
Constructing uncountably many groups with the same profinite completion
par: Nikolov, N, et autres
Publié: (2021) -
On finitely generated profinite groups I: strong completeness and
uniform bounds
par: Nikolov, N, et autres
Publié: (2006) -
On finitely generated profinite groups II, products in quasisimple
groups
par: Nikolov, N, et autres
Publié: (2006) -
Finite index subgroups in profinite groups
par: Nikolov, N, et autres
Publié: (2003)