Detecting causal associations in large nonlinear time series datasets
Identifying causal relationships from observational time series data is a key problem in disciplines such as climate science or neuroscience, where experiments are often not possible. Data-driven causal inference is challenging since datasets are often high-dimensional and nonlinear with limited sam...
Hlavní autoři: | Runge, J, Nowack, P, Kretschmer, M, Flaxman, S, Sejdinovic, D |
---|---|
Médium: | Journal article |
Vydáno: |
American Association for the Advancement of Science
2019
|
Podobné jednotky
-
Large-scale nonlinear Granger causality for inferring directed dependence from short multivariate time-series data
Autor: Axel Wismüller, a další
Vydáno: (2021-04-01) -
Robust nonlinear causality analysis of nonstationary multivariate physiological time series
Autor: Schäck, Tim, a další
Vydáno: (2020) -
FTSPlot: fast time series visualization for large datasets.
Autor: Michael Riss
Vydáno: (2014-01-01) -
Causal networks for climate model evaluation and constrained projections
Autor: Peer Nowack, a další
Vydáno: (2020-03-01) -
A kernel test for causal association via noise contrastive backdoor adjustment
Autor: Hu, R, a další
Vydáno: (2024)