Transcendence of Hecke-Mahler series
We prove transcendence of the Hecke-Mahler series ∑∞n=0f(⌊nθ+α⌋)β−n, where f(x)∈Z[x] is a non-constant polynomial α is a real number, θ is an irrational real number, and β is an algebraic number such that |β|>1.
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
London Mathematical Society
2025
|
_version_ | 1824459102427807744 |
---|---|
author | Luca, F Ouaknine, J Worrell, JB |
author_facet | Luca, F Ouaknine, J Worrell, JB |
author_sort | Luca, F |
collection | OXFORD |
description | We prove transcendence of the Hecke-Mahler series ∑∞n=0f(⌊nθ+α⌋)β−n, where f(x)∈Z[x] is a non-constant polynomial α is a real number, θ is an irrational real number, and β is an algebraic number such that |β|>1. |
first_indexed | 2025-02-19T04:36:27Z |
format | Journal article |
id | oxford-uuid:7d94b8fe-ad5e-456e-9838-69aca1a454d6 |
institution | University of Oxford |
language | English |
last_indexed | 2025-02-19T04:36:27Z |
publishDate | 2025 |
publisher | London Mathematical Society |
record_format | dspace |
spelling | oxford-uuid:7d94b8fe-ad5e-456e-9838-69aca1a454d62025-02-04T16:17:12ZTranscendence of Hecke-Mahler seriesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7d94b8fe-ad5e-456e-9838-69aca1a454d6EnglishSymplectic ElementsLondon Mathematical Society2025Luca, FOuaknine, JWorrell, JBWe prove transcendence of the Hecke-Mahler series ∑∞n=0f(⌊nθ+α⌋)β−n, where f(x)∈Z[x] is a non-constant polynomial α is a real number, θ is an irrational real number, and β is an algebraic number such that |β|>1. |
spellingShingle | Luca, F Ouaknine, J Worrell, JB Transcendence of Hecke-Mahler series |
title | Transcendence of Hecke-Mahler series |
title_full | Transcendence of Hecke-Mahler series |
title_fullStr | Transcendence of Hecke-Mahler series |
title_full_unstemmed | Transcendence of Hecke-Mahler series |
title_short | Transcendence of Hecke-Mahler series |
title_sort | transcendence of hecke mahler series |
work_keys_str_mv | AT lucaf transcendenceofheckemahlerseries AT ouakninej transcendenceofheckemahlerseries AT worrelljb transcendenceofheckemahlerseries |