Transcendence of Hecke-Mahler series

We prove transcendence of the Hecke-Mahler series ∑∞n=0f(⌊nθ+α⌋)β−n, where f(x)∈Z[x] is a non-constant polynomial α is a real number, θ is an irrational real number, and β is an algebraic number such that |β|>1.

Bibliographic Details
Main Authors: Luca, F, Ouaknine, J, Worrell, JB
Format: Journal article
Language:English
Published: London Mathematical Society 2025
_version_ 1824459102427807744
author Luca, F
Ouaknine, J
Worrell, JB
author_facet Luca, F
Ouaknine, J
Worrell, JB
author_sort Luca, F
collection OXFORD
description We prove transcendence of the Hecke-Mahler series ∑∞n=0f(⌊nθ+α⌋)β−n, where f(x)∈Z[x] is a non-constant polynomial α is a real number, θ is an irrational real number, and β is an algebraic number such that |β|>1.
first_indexed 2025-02-19T04:36:27Z
format Journal article
id oxford-uuid:7d94b8fe-ad5e-456e-9838-69aca1a454d6
institution University of Oxford
language English
last_indexed 2025-02-19T04:36:27Z
publishDate 2025
publisher London Mathematical Society
record_format dspace
spelling oxford-uuid:7d94b8fe-ad5e-456e-9838-69aca1a454d62025-02-04T16:17:12ZTranscendence of Hecke-Mahler seriesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7d94b8fe-ad5e-456e-9838-69aca1a454d6EnglishSymplectic ElementsLondon Mathematical Society2025Luca, FOuaknine, JWorrell, JBWe prove transcendence of the Hecke-Mahler series ∑∞n=0f(⌊nθ+α⌋)β−n, where f(x)∈Z[x] is a non-constant polynomial α is a real number, θ is an irrational real number, and β is an algebraic number such that |β|>1.
spellingShingle Luca, F
Ouaknine, J
Worrell, JB
Transcendence of Hecke-Mahler series
title Transcendence of Hecke-Mahler series
title_full Transcendence of Hecke-Mahler series
title_fullStr Transcendence of Hecke-Mahler series
title_full_unstemmed Transcendence of Hecke-Mahler series
title_short Transcendence of Hecke-Mahler series
title_sort transcendence of hecke mahler series
work_keys_str_mv AT lucaf transcendenceofheckemahlerseries
AT ouakninej transcendenceofheckemahlerseries
AT worrelljb transcendenceofheckemahlerseries