Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface
In one space dimension we address the homogenization of the spectral problem for a singularly perturbed diffusion equation in a periodic medium. Denoting by (Epsilon) the period, the diffusion coefficient is scaled as (Epsilon). The domain is made of two purely periodic media separated by an interfa...
Những tác giả chính: | Allaire, G, Capdeboscq, Y |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer-Verlag
2002
|
Những quyển sách tương tự
-
Homogenization and localization with an interface
Bằng: Allaire, G, et al.
Được phát hành: (2003) -
Homogenization of a spectral problem in neutronic multigroup diffusion
Bằng: Allaire, G, et al.
Được phát hành: (2000) -
Homogenization of periodic systems with large potentials
Bằng: Capdeboscq, Y, et al.
Được phát hành: (2004) -
Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions
Bằng: Allaire, G, et al.
Được phát hành: (2012) -
Homogenization of a neutronic critical diffusion problem with drift
Bằng: Capdeboscq, Y
Được phát hành: (2002)