Unsupervised discovery of nonlinear structure using contrastive backpropagation.
We describe a way of modeling high-dimensional data vectors by using an unsupervised, nonlinear, multilayer neural network in which the activity of each neuron-like unit makes an additive contribution to a global energy score that indicates how surprised the network is by the data vector. The connec...
المؤلفون الرئيسيون: | Hinton, G, Osindero, S, Welling, M, Teh, Y |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
2006
|
مواد مشابهة
-
Energy-based models for sparse overcomplete representations
حسب: Teh, Y, وآخرون
منشور في: (2004) -
A fast learning algorithm for deep belief nets.
حسب: Hinton, G, وآخرون
منشور في: (2006) -
Unsupervised part discovery from contrastive reconstruction
حسب: Choudhury, S, وآخرون
منشور في: (2021) -
Backpropagation and the brain
حسب: Lillicrap, TP, وآخرون
منشور في: (2020) -
Unsupervised discovery of parts, structure, and dynamics
حسب: Xu, Zhenjia, وآخرون
منشور في: (2020)