SMT-based verification applied to non-convex optimization problems

This paper presents a novel, complete, and flexible optimization algorithm, which relies on recursive executions that re-constrains a model-checking procedure based on Satisfiability Modulo Theories (SMT). This SMT-based optimization technique is able to optimize a wide range of functions, including...

詳細記述

書誌詳細
主要な著者: Araujo, R, Bessa, I, Cordeiro, L, Filho, J
フォーマット: Conference item
出版事項: Institute of Electrical and Electronics Engineers 2017
その他の書誌記述
要約:This paper presents a novel, complete, and flexible optimization algorithm, which relies on recursive executions that re-constrains a model-checking procedure based on Satisfiability Modulo Theories (SMT). This SMT-based optimization technique is able to optimize a wide range of functions, including non-linear and non-convex problems using fixed-point arithmetic. Although SMT-based optimization is not a new technique, this work is the pioneer in solving non-linear and non-convex problems based on SMT; previous applications are only able to solve integer and rational linear problems. The proposed SMT-based optimization algorithm is compared to other traditional optimization techniques. Experimental results show the efficiency and effectiveness of the proposed algorithm, which finds the optimal solution in all evaluated benchmarks, while traditional techniques are usually trapped by local minima.