Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients
<p>We propose a discontinuous Galerkin finite element method (DGFEM) for fully nonlinear elliptic Hamilton--Jacobi--Bellman (HJB) partial differential equations (PDE) of second order with Cordes coefficients. Our analysis shows that the method is both consistent and stable, with arbitrarily hi...
Hlavní autor: | Smears, I |
---|---|
Další autoři: | Suli, E |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2015
|
Témata: |
Podobné jednotky
-
Discontinuous Galerkin finite element approximation of Hamilton--Jacobi--Bellman equations with Cordes coefficients
Autor: Smears, I, a další
Vydáno: (2014) -
Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordès coefficients
Autor: Smears, I, a další
Vydáno: (2013) -
Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients
Autor: Smears, I, a další
Vydáno: (2015) -
Discontinuous Galerkin finite element methods for time-dependent Hamilton--Jacobi--Bellman equations with Cordes coefficients
Autor: Smears, I, a další
Vydáno: (2014) -
Mixed finite element approximation of the Hamilton-Jacobi-Bellman equation with Cordes coefficients
Autor: Gallistl, D, a další
Vydáno: (2019)