Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordes coefficients
<p>We propose a discontinuous Galerkin finite element method (DGFEM) for fully nonlinear elliptic Hamilton--Jacobi--Bellman (HJB) partial differential equations (PDE) of second order with Cordes coefficients. Our analysis shows that the method is both consistent and stable, with arbitrarily hi...
Autor principal: | Smears, I |
---|---|
Otros Autores: | Suli, E |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
2015
|
Materias: |
Ejemplares similares
-
Discontinuous Galerkin finite element approximation of Hamilton--Jacobi--Bellman equations with Cordes coefficients
por: Smears, I, et al.
Publicado: (2014) -
Discontinuous Galerkin finite element approximation of Hamilton-Jacobi-Bellman equations with Cordès coefficients
por: Smears, I, et al.
Publicado: (2013) -
Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients
por: Smears, I, et al.
Publicado: (2015) -
Discontinuous Galerkin finite element methods for time-dependent Hamilton--Jacobi--Bellman equations with Cordes coefficients
por: Smears, I, et al.
Publicado: (2014) -
Mixed finite element approximation of the Hamilton-Jacobi-Bellman equation with Cordes coefficients
por: Gallistl, D, et al.
Publicado: (2019)