Origin of superconductivity in boron-doped silicon carbide from first principles

We investigate the origin of superconductivity in boron-doped silicon carbide using a first-principles approach. The strength of the electron-phonon coupling calculated for cubic SiC at the experimental doping level suggests that the superconductivity observed in this material is phonon mediated. An...

Full description

Bibliographic Details
Main Authors: Noffsinger, J, Giustino, F, Louie, S, Cohen, M
Format: Journal article
Language:English
Published: 2009
Description
Summary:We investigate the origin of superconductivity in boron-doped silicon carbide using a first-principles approach. The strength of the electron-phonon coupling calculated for cubic SiC at the experimental doping level suggests that the superconductivity observed in this material is phonon mediated. Analysis of the 2H-SiC, 4H-SiC, 6H-SiC, and 3C-SiC polytypes indicates that superconductivity depends on the stacking of the Si and C layers and that the cubic polytype will exhibit the highest transition temperature. In contrast to the cases of silicon and diamond, acoustic phonons are found to play a major role in the superconductivity of silicon carbide. © 2009 The American Physical Society.