Robust full Bayesian methods for neural networks
In this paper, we propose a full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. We then propose a reversible jump Markov chain Monte Carlo (...
Главные авторы: | Andrieu, C, de Freitas, J, Doucet, A |
---|---|
Формат: | Conference item |
Опубликовано: |
Neural information processing systems foundation
2000
|
Схожие документы
-
Robust Full Bayesian Learning for Radial Basis Networks
по: Andrieu, C, и др.
Опубликовано: (2001) -
Robust full Bayesian learning for radial basis networks.
по: Andrieu, C, и др.
Опубликовано: (2001) -
Sequential MCMC for Bayesian model selection
по: Andrieu, C, и др.
Опубликовано: (1999) -
On sequential Monte Carlo sampling methods for Bayesian filtering
по: Doucet, A, и др.
Опубликовано: (2000) -
Particle methods for Bayesian modeling and enhancement of speech signals
по: Vermaak, J, и др.
Опубликовано: (2002)