Robust full Bayesian methods for neural networks
In this paper, we propose a full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. We then propose a reversible jump Markov chain Monte Carlo (...
Κύριοι συγγραφείς: | Andrieu, C, de Freitas, J, Doucet, A |
---|---|
Μορφή: | Conference item |
Έκδοση: |
Neural information processing systems foundation
2000
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Robust Full Bayesian Learning for Radial Basis Networks
ανά: Andrieu, C, κ.ά.
Έκδοση: (2001) -
Robust full Bayesian learning for radial basis networks.
ανά: Andrieu, C, κ.ά.
Έκδοση: (2001) -
Sequential MCMC for Bayesian model selection
ανά: Andrieu, C, κ.ά.
Έκδοση: (1999) -
On sequential Monte Carlo sampling methods for Bayesian filtering
ανά: Doucet, A, κ.ά.
Έκδοση: (2000) -
Particle methods for Bayesian modeling and enhancement of speech signals
ανά: Vermaak, J, κ.ά.
Έκδοση: (2002)