Robust full Bayesian methods for neural networks
In this paper, we propose a full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. We then propose a reversible jump Markov chain Monte Carlo (...
المؤلفون الرئيسيون: | Andrieu, C, de Freitas, J, Doucet, A |
---|---|
التنسيق: | Conference item |
منشور في: |
Neural information processing systems foundation
2000
|
مواد مشابهة
-
Robust Full Bayesian Learning for Radial Basis Networks
حسب: Andrieu, C, وآخرون
منشور في: (2001) -
Robust full Bayesian learning for radial basis networks.
حسب: Andrieu, C, وآخرون
منشور في: (2001) -
Sequential MCMC for Bayesian model selection
حسب: Andrieu, C, وآخرون
منشور في: (1999) -
On sequential Monte Carlo sampling methods for Bayesian filtering
حسب: Doucet, A, وآخرون
منشور في: (2000) -
Particle methods for Bayesian modeling and enhancement of speech signals
حسب: Vermaak, J, وآخرون
منشور في: (2002)