Robust full Bayesian methods for neural networks
In this paper, we propose a full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. We then propose a reversible jump Markov chain Monte Carlo (...
Hlavní autoři: | Andrieu, C, de Freitas, J, Doucet, A |
---|---|
Médium: | Conference item |
Vydáno: |
Neural information processing systems foundation
2000
|
Podobné jednotky
-
Robust Full Bayesian Learning for Radial Basis Networks
Autor: Andrieu, C, a další
Vydáno: (2001) -
Robust full Bayesian learning for radial basis networks.
Autor: Andrieu, C, a další
Vydáno: (2001) -
Sequential MCMC for Bayesian model selection
Autor: Andrieu, C, a další
Vydáno: (1999) -
On sequential Monte Carlo sampling methods for Bayesian filtering
Autor: Doucet, A, a další
Vydáno: (2000) -
Particle methods for Bayesian modeling and enhancement of speech signals
Autor: Vermaak, J, a další
Vydáno: (2002)