Robust full Bayesian methods for neural networks
In this paper, we propose a full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. We then propose a reversible jump Markov chain Monte Carlo (...
Main Authors: | Andrieu, C, de Freitas, J, Doucet, A |
---|---|
פורמט: | Conference item |
יצא לאור: |
Neural information processing systems foundation
2000
|
פריטים דומים
-
Robust Full Bayesian Learning for Radial Basis Networks
מאת: Andrieu, C, et al.
יצא לאור: (2001) -
Robust full Bayesian learning for radial basis networks.
מאת: Andrieu, C, et al.
יצא לאור: (2001) -
Sequential MCMC for Bayesian model selection
מאת: Andrieu, C, et al.
יצא לאור: (1999) -
On sequential Monte Carlo sampling methods for Bayesian filtering
מאת: Doucet, A, et al.
יצא לאור: (2000) -
Particle methods for Bayesian modeling and enhancement of speech signals
מאת: Vermaak, J, et al.
יצא לאור: (2002)