Nonlinear effects on Turing patterns: time oscillations and chaos
We show that a model reaction-diffusion system with two species in a monostable regime and over a large region of parameter space produces Turing patterns coexisting with a limit cycle which cannot be discerned from the linear analysis. As a consequence, the patterns oscillate in time. When varying...
Κύριοι συγγραφείς: | Aragón, J, Barrio, R, Woolley, T, Baker, R, Maini, P |
---|---|
Μορφή: | Journal article |
Έκδοση: |
American Physical Society
2012
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Nonlinear effects on Turing patterns: time oscillations and chaos.
ανά: Aragón, J, κ.ά.
Έκδοση: (2012) -
Non-linear effects on Turing patterns: time oscillations and chaos.
ανά: Aragón, J, κ.ά.
Έκδοση: (2012) -
Analysis of stationary droplets in a generic Turing reaction-diffusion system
ανά: Woolley, T, κ.ά.
Έκδοση: (2010) -
Analysis of stationary droplets in a generic Turing reaction-diffusion system.
ανά: Woolley, T, κ.ά.
Έκδοση: (2010) -
Turing patterns with pentagonal symmetry.
ανά: Aragón, J, κ.ά.
Έκδοση: (2002)