Temperature and magnetic field dependent photoluminescence from carbon nanotubes
Photoluminescence as a function of temperature and magnetic field from single walled carbon nanotube solutions is described. This is modelled assuming that it is dominated by the small energy splitting between the dark and bright states of the singlet excitons which are found to be in the region of...
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2007
|
_version_ | 1826281693684695040 |
---|---|
author | Nicholas, R Mortimer, I Li, L Nish, A Portugall, O Rikken, G |
author_facet | Nicholas, R Mortimer, I Li, L Nish, A Portugall, O Rikken, G |
author_sort | Nicholas, R |
collection | OXFORD |
description | Photoluminescence as a function of temperature and magnetic field from single walled carbon nanotube solutions is described. This is modelled assuming that it is dominated by the small energy splitting between the dark and bright states of the singlet excitons which are found to be in the region of 1-5 meV for nanotubes of 0.8-1.2nm. The emission energies show a large red-shift due to the introduction of an Aharanov-Bohm phase by magnetic field along the tube axis and the luminescence intensity is strongly enhanced at low temperatures due to the mixing of the different valley states of the excitons. © World Scientific Publishing Company. |
first_indexed | 2024-03-07T00:32:38Z |
format | Journal article |
id | oxford-uuid:8058d1c2-818a-4c63-80f8-ec2cbea99fff |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T00:32:38Z |
publishDate | 2007 |
record_format | dspace |
spelling | oxford-uuid:8058d1c2-818a-4c63-80f8-ec2cbea99fff2022-03-26T21:22:38ZTemperature and magnetic field dependent photoluminescence from carbon nanotubesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8058d1c2-818a-4c63-80f8-ec2cbea99fffEnglishSymplectic Elements at Oxford2007Nicholas, RMortimer, ILi, LNish, APortugall, ORikken, GPhotoluminescence as a function of temperature and magnetic field from single walled carbon nanotube solutions is described. This is modelled assuming that it is dominated by the small energy splitting between the dark and bright states of the singlet excitons which are found to be in the region of 1-5 meV for nanotubes of 0.8-1.2nm. The emission energies show a large red-shift due to the introduction of an Aharanov-Bohm phase by magnetic field along the tube axis and the luminescence intensity is strongly enhanced at low temperatures due to the mixing of the different valley states of the excitons. © World Scientific Publishing Company. |
spellingShingle | Nicholas, R Mortimer, I Li, L Nish, A Portugall, O Rikken, G Temperature and magnetic field dependent photoluminescence from carbon nanotubes |
title | Temperature and magnetic field dependent photoluminescence from carbon nanotubes |
title_full | Temperature and magnetic field dependent photoluminescence from carbon nanotubes |
title_fullStr | Temperature and magnetic field dependent photoluminescence from carbon nanotubes |
title_full_unstemmed | Temperature and magnetic field dependent photoluminescence from carbon nanotubes |
title_short | Temperature and magnetic field dependent photoluminescence from carbon nanotubes |
title_sort | temperature and magnetic field dependent photoluminescence from carbon nanotubes |
work_keys_str_mv | AT nicholasr temperatureandmagneticfielddependentphotoluminescencefromcarbonnanotubes AT mortimeri temperatureandmagneticfielddependentphotoluminescencefromcarbonnanotubes AT lil temperatureandmagneticfielddependentphotoluminescencefromcarbonnanotubes AT nisha temperatureandmagneticfielddependentphotoluminescencefromcarbonnanotubes AT portugallo temperatureandmagneticfielddependentphotoluminescencefromcarbonnanotubes AT rikkeng temperatureandmagneticfielddependentphotoluminescencefromcarbonnanotubes |