Multiple Kernels for Object Detection
Our objective is to obtain a state-of-the art object category detector by employing a state-of-the-art image classifier to search for the object in all possible image subwindows. We use multiple kernel learning of Varma and Ray (ICCV 2007) to learn an optimal combination of exponential χ2 kernels, e...
主要な著者: | Vedaldi, A, Gulshan, V, Varma, M, Zisserman, A, IEEE |
---|---|
フォーマット: | Conference item |
出版事項: |
2009
|
類似資料
-
Multiple kernels for object detection
著者:: Vedaldi, A, 等
出版事項: (2010) -
Sparse Kernel Approximations for Efficient Classification and Detection
著者:: Vedaldi, A, 等
出版事項: (2012) -
Sparse kernel approximations for efficient classification and detection
著者:: Vedaldi, A, 等
出版事項: (2012) -
Efficient additive kernels via explicit feature maps
著者:: Vedaldi, A, 等
出版事項: (2012) -
Simultaneous object detection and ranking with weak supervision
著者:: Blaschko, MB, 等
出版事項: (2011)