Understanding and extending subgraph GNNs by rethinking their symmetries
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most pro...
Үндсэн зохиолчид: | Frasca, F, Bevilacqua, B, Bronstein, M, Maron, H |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Curran Associates
2022
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
How does over-squashing affect the power of GNNs?
-н: Di Giovanni, F, зэрэг
Хэвлэсэн: (2024) -
Neural sheaf diffusion: a topological perspective on heterophily and oversmoothing in GNNs
-н: Bodnar, C, зэрэг
Хэвлэсэн: (2023) -
From Graph Theory to Graph Neural Networks (GNNs): The Opportunities of GNNs in Power Electronics
-н: Yuzhuo Li, зэрэг
Хэвлэсэн: (2023-01-01) -
Learning Augmentation for GNNs With Consistency Regularization
-н: Hyeonjin Park, зэрэг
Хэвлэсэн: (2021-01-01) -
On the correspondence between monotonic max-sum GNNs and datalog
-н: Tena Cucala, D, зэрэг
Хэвлэсэн: (2023)