Bayesian clustering in decomposable graphs
In this paper we propose a class of prior distributions on decomposable graphs, allowing for improved modeling flexibility. While existing methods solely penalize the number of edges, the proposed work empowers practitioners to control clustering, level of separation, and other features of the graph...
Principais autores: | Bornn, L, Caron, F |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2011
|
Registros relacionados
-
Bayesian nonparametric models on decomposable graphs
por: Caron, F, et al.
Publicado em: (2009) -
Decomposing the complete r -graph
por: Leader, Imre, et al.
Publicado em: (2018) -
Bayesian nonparametric models for bipartite graphs
por: Caron, F
Publicado em: (2012) -
Decomposable graphs and definitions with no quantifier alternation
por: Oleg Pikhurko, et al.
Publicado em: (2005-01-01) -
Recursively arbitrarily vertex-decomposable graphs
por: Olivier Baudon, et al.
Publicado em: (2012-01-01)