Bayesian clustering in decomposable graphs
In this paper we propose a class of prior distributions on decomposable graphs, allowing for improved modeling flexibility. While existing methods solely penalize the number of edges, the proposed work empowers practitioners to control clustering, level of separation, and other features of the graph...
Main Authors: | Bornn, L, Caron, F |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
2011
|
Títulos similares
-
Bayesian nonparametric models on decomposable graphs
por: Caron, F, et al.
Publicado: (2009) -
Decomposing the complete r -graph
por: Leader, Imre, et al.
Publicado: (2018) -
Bayesian nonparametric models for bipartite graphs
por: Caron, F
Publicado: (2012) -
Decomposable graphs and definitions with no quantifier alternation
por: Oleg Pikhurko, et al.
Publicado: (2005-01-01) -
Recursively arbitrarily vertex-decomposable graphs
por: Olivier Baudon, et al.
Publicado: (2012-01-01)