Kidnapped radar: topological radar localisation using rotationally-invariant metric learning
This paper presents a system for robust, large-scale topological localisation using Frequency-Modulated ContinuousWave (FMCW) scanning radar. We learn a metric space for embedding polar radar scans using CNN and NetVLAD architectures traditionally applied to the visual domain. However, we tailor the...
主要な著者: | Gadd, M, Sǎftescu, Ş, De Martini, D, Barnes, D, Newman, P |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE Xplore
2020
|
類似資料
-
kRadar++: coarse-to-fine FMCW scanning radar localisation
著者:: De Martini, D, 等
出版事項: (2020) -
Look around you: sequence-based radar place recognition with learned rotational invariance
著者:: Gadd, M, 等
出版事項: (2020) -
kRadar++: Coarse-to-Fine FMCW Scanning Radar Localisation
著者:: Daniele De Martini, 等
出版事項: (2020-10-01) -
Under the radar: learning to predict robust keypoints for odometry estimation and metric localisation in radar
著者:: Barnes, D, 等
出版事項: (2020) -
RSL-Net: localising in satellite images from a radar on the ground
著者:: Tang, TY, 等
出版事項: (2020)