A note on induced Turán numbers

<p>Loh, Tait, Timmons and Zhou introduced the notion of induced Turán numbers, defining $\operatorname{ex}(n, \{H, F\text{-ind}\})$ to be the greatest number of edges in an $n$-vertex graph with no copy of $H$ and no induced copy of $F$. Their and subsequent work has focussed on $F$ being a co...

Celý popis

Podrobná bibliografie
Hlavní autor: Illingworth, F
Médium: Journal article
Jazyk:English
Vydáno: 2021
Popis
Shrnutí:<p>Loh, Tait, Timmons and Zhou introduced the notion of induced Turán numbers, defining $\operatorname{ex}(n, \{H, F\text{-ind}\})$ to be the greatest number of edges in an $n$-vertex graph with no copy of $H$ and no induced copy of $F$. Their and subsequent work has focussed on $F$ being a complete bipartite graph. In this short note, we complement this focus by asymptotically determining the induced Turán number whenever $H$ is not bipartite and $F$ is not an independent set nor a complete bipartite graph.</p>