The phase transition in inhomogeneous random graphs
We introduce a very general model of an inhomogenous random graph with independence between the edges, which scales so that the number of edges is linear in the number of vertices. This scaling corresponds to the p=c/n scaling for G(n,p) used to study the phase transition; also, it seems to be a pro...
Hlavní autoři: | Bollobas, B, Janson, S, Riordan, O |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2005
|
Podobné jednotky
-
The phase transition in the uniformly grown random graph has infinite order
Autor: Bollobas, B, a další
Vydáno: (2005) -
Susceptibility in inhomogeneous random graphs
Autor: Janson, S, a další
Vydáno: (2009) -
Duality in inhomogeneous random graphs, and the cut metric
Autor: Janson, S, a další
Vydáno: (2009) -
Sparse random graphs with clustering
Autor: Bollobas, B, a další
Vydáno: (2008) -
The cut metric, random graphs, and branching processes
Autor: Bollobas, B, a další
Vydáno: (2009)