Hadamard wirtinger flow for sparse phase retrieval

We consider the problem of reconstructing an n-dimensional k-sparse signal from a set of noiseless magnitude-only measurements. Formulating the problem as an unregularized empirical risk minimization task, we study the sample complexity performance of gradient descent with Hadamard parametrization,...

ver descrição completa

Detalhes bibliográficos
Principais autores: Wu, F, Rebeschini, P
Formato: Conference item
Idioma:English
Publicado em: Journal of Machine Learning Research 2021

Registros relacionados