Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families

Let f and g be two cuspidal modular forms and let F be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space W . Using ideas of Pottharst, under certain hypotheses on f and g, we construct a coherent sheaf over V×W that interpolates the Bloch–Kato Selmer group...

Full description

Bibliographic Details
Main Authors: Graham, A, Gulotta, DR, Xu, Y
Format: Journal article
Language:English
Published: Canadian Mathematical Society 2020
_version_ 1826281890907160576
author Graham, A
Gulotta, DR
Xu, Y
author_facet Graham, A
Gulotta, DR
Xu, Y
author_sort Graham, A
collection OXFORD
description Let f and g be two cuspidal modular forms and let F be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space W . Using ideas of Pottharst, under certain hypotheses on f and g, we construct a coherent sheaf over V×W that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function 𝐿𝑝 interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of 𝐿𝑝 .
first_indexed 2024-03-07T00:35:37Z
format Journal article
id oxford-uuid:814a9f3b-231b-4799-97f2-b8f12c0b3316
institution University of Oxford
language English
last_indexed 2024-03-07T00:35:37Z
publishDate 2020
publisher Canadian Mathematical Society
record_format dspace
spelling oxford-uuid:814a9f3b-231b-4799-97f2-b8f12c0b33162022-03-26T21:29:26ZBounding Selmer groups for the Rankin–Selberg convolution of Coleman familiesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:814a9f3b-231b-4799-97f2-b8f12c0b3316EnglishSymplectic ElementsCanadian Mathematical Society2020Graham, AGulotta, DRXu, YLet f and g be two cuspidal modular forms and let F be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space W . Using ideas of Pottharst, under certain hypotheses on f and g, we construct a coherent sheaf over V×W that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function 𝐿𝑝 interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of 𝐿𝑝 .
spellingShingle Graham, A
Gulotta, DR
Xu, Y
Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families
title Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families
title_full Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families
title_fullStr Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families
title_full_unstemmed Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families
title_short Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families
title_sort bounding selmer groups for the rankin selberg convolution of coleman families
work_keys_str_mv AT grahama boundingselmergroupsfortherankinselbergconvolutionofcolemanfamilies
AT gulottadr boundingselmergroupsfortherankinselbergconvolutionofcolemanfamilies
AT xuy boundingselmergroupsfortherankinselbergconvolutionofcolemanfamilies