Bounding Selmer groups for the Rankin–Selberg convolution of Coleman families
Let f and g be two cuspidal modular forms and let F be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space W . Using ideas of Pottharst, under certain hypotheses on f and g, we construct a coherent sheaf over V×W that interpolates the Bloch–Kato Selmer group...
Principais autores: | Graham, A, Gulotta, DR, Xu, Y |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Canadian Mathematical Society
2020
|
Registros relacionados
-
On the Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives
por: Liu, Yifeng, et al.
Publicado em: (2022) -
On the Selmer groups of elliptic curves in quadratic twist families
por: Wong, Siman Yat-Fai
Publicado em: (2007) -
Selmer groups as flat cohomology groups
por: Česnavičius, Kęstutis
Publicado em: (2014) -
The size of Selmer groups for the congruent number problem
por: Heath-Brown, D
Publicado em: (1993) -
Random maximal isotropic subspaces and Selmer groups
por: Poonen, Bjorn, et al.
Publicado em: (2012)