Irreducible components of extended eigenvarieties and interpolating Langlands functoriality

We study the basic geometry of a class of analytic adic spaces that arise in the study of the extended (or adic) eigenvarieties constructed by Andreatta–Iovita–Pilloni, Gulotta and the authors. We apply this to prove a general interpolation theorem for Langlands functoriality, which works for extend...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Johansson, C, Newton, J
Aineistotyyppi: Journal article
Kieli:English
Julkaistu: International Press 2019
_version_ 1826282080475021312
author Johansson, C
Newton, J
author_facet Johansson, C
Newton, J
author_sort Johansson, C
collection OXFORD
description We study the basic geometry of a class of analytic adic spaces that arise in the study of the extended (or adic) eigenvarieties constructed by Andreatta–Iovita–Pilloni, Gulotta and the authors. We apply this to prove a general interpolation theorem for Langlands functoriality, which works for extended eigenvarieties and improves upon existing results in characteristic 0. As an application, we show that the characteristic p locus of the extended eigenvariety for GL2/F, where F/Q is a cyclic extension, contains non-ordinary components of dimension at least [F : Q] .
first_indexed 2024-03-07T00:38:27Z
format Journal article
id oxford-uuid:8237f94e-1c82-4a79-9f53-c4826235f7e0
institution University of Oxford
language English
last_indexed 2024-03-07T00:38:27Z
publishDate 2019
publisher International Press
record_format dspace
spelling oxford-uuid:8237f94e-1c82-4a79-9f53-c4826235f7e02022-03-26T21:35:51ZIrreducible components of extended eigenvarieties and interpolating Langlands functorialityJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8237f94e-1c82-4a79-9f53-c4826235f7e0EnglishSymplectic ElementsInternational Press2019Johansson, CNewton, JWe study the basic geometry of a class of analytic adic spaces that arise in the study of the extended (or adic) eigenvarieties constructed by Andreatta–Iovita–Pilloni, Gulotta and the authors. We apply this to prove a general interpolation theorem for Langlands functoriality, which works for extended eigenvarieties and improves upon existing results in characteristic 0. As an application, we show that the characteristic p locus of the extended eigenvariety for GL2/F, where F/Q is a cyclic extension, contains non-ordinary components of dimension at least [F : Q] .
spellingShingle Johansson, C
Newton, J
Irreducible components of extended eigenvarieties and interpolating Langlands functoriality
title Irreducible components of extended eigenvarieties and interpolating Langlands functoriality
title_full Irreducible components of extended eigenvarieties and interpolating Langlands functoriality
title_fullStr Irreducible components of extended eigenvarieties and interpolating Langlands functoriality
title_full_unstemmed Irreducible components of extended eigenvarieties and interpolating Langlands functoriality
title_short Irreducible components of extended eigenvarieties and interpolating Langlands functoriality
title_sort irreducible components of extended eigenvarieties and interpolating langlands functoriality
work_keys_str_mv AT johanssonc irreduciblecomponentsofextendedeigenvarietiesandinterpolatinglanglandsfunctoriality
AT newtonj irreduciblecomponentsofextendedeigenvarietiesandinterpolatinglanglandsfunctoriality