Dynamic graph message passing networks
Modelling long-range dependencies is critical for scene understanding tasks in computer vision. Although CNNs have excelled in many vision tasks, they are still limited in capturing long-range structured relationships as they typically consist of layers of local kernels. A fully-connected graph is b...
Hlavní autoři: | Zhang, L, Xu, D, Arnab, A, Torr, PHS |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2020
|
Podobné jednotky
-
Dynamic graph message passing networks for visual recognition
Autor: Zhang, L, a další
Vydáno: (2022) -
Graph inductive biases in transformers without message passing
Autor: Ma, L, a další
Vydáno: (2023) -
Graph inductive biases in transformers without message passing
Autor: Ma, L, a další
Vydáno: (2023) -
Polarized message-passing in graph neural networks
Autor: He, Tiantian, a další
Vydáno: (2024) -
A graph neural network with negative message passing and uniformity maximization for graph coloring
Autor: Xiangyu Wang, a další
Vydáno: (2024-03-01)