Dynamic graph message passing networks
Modelling long-range dependencies is critical for scene understanding tasks in computer vision. Although CNNs have excelled in many vision tasks, they are still limited in capturing long-range structured relationships as they typically consist of layers of local kernels. A fully-connected graph is b...
| Үндсэн зохиолчид: | Zhang, L, Xu, D, Arnab, A, Torr, PHS |
|---|---|
| Формат: | Conference item |
| Хэл сонгох: | English |
| Хэвлэсэн: |
IEEE
2020
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Dynamic graph message passing networks for visual recognition
-н: Zhang, L, зэрэг
Хэвлэсэн: (2022) -
Graph inductive biases in transformers without message passing
-н: Ma, L, зэрэг
Хэвлэсэн: (2023) -
Graph inductive biases in transformers without message passing
-н: Ma, L, зэрэг
Хэвлэсэн: (2023) -
Polarized message-passing in graph neural networks
-н: He, Tiantian, зэрэг
Хэвлэсэн: (2024) -
A graph neural network with negative message passing and uniformity maximization for graph coloring
-н: Xiangyu Wang, зэрэг
Хэвлэсэн: (2024-03-01)