Dynamic graph message passing networks
Modelling long-range dependencies is critical for scene understanding tasks in computer vision. Although CNNs have excelled in many vision tasks, they are still limited in capturing long-range structured relationships as they typically consist of layers of local kernels. A fully-connected graph is b...
Những tác giả chính: | Zhang, L, Xu, D, Arnab, A, Torr, PHS |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
IEEE
2020
|
Những quyển sách tương tự
-
Dynamic graph message passing networks for visual recognition
Bằng: Zhang, L, et al.
Được phát hành: (2022) -
Graph inductive biases in transformers without message passing
Bằng: Ma, L, et al.
Được phát hành: (2023) -
Graph inductive biases in transformers without message passing
Bằng: Ma, L, et al.
Được phát hành: (2023) -
Polarized message-passing in graph neural networks
Bằng: He, Tiantian, et al.
Được phát hành: (2024) -
A graph neural network with negative message passing and uniformity maximization for graph coloring
Bằng: Xiangyu Wang, et al.
Được phát hành: (2024-03-01)