Abelian arithmetic Chern-Simons theory and arithmetic linking numbers
Following the method of Seifert surfaces in knot theory, we define arithmetic linking numbers and height pairings of ideals using arithmetic duality theorems, and compute them in terms of n-th power residue symbols. This formalism leads to a precise arithmetic analogue of a 'path-integral formu...
المؤلفون الرئيسيون: | Chung, H, Kim, D, Kim, M, Pappas, G, Park, J, Yoo, H |
---|---|
التنسيق: | Journal article |
منشور في: |
Oxford University Press
2017
|
مواد مشابهة
-
Arithmetic Chern-Simons Theory II
حسب: Chung, H, وآخرون
منشور في: (2017) -
Symmetries of abelian Chern-Simons theories and arithmetic
حسب: Diego Delmastro, وآخرون
منشور في: (2021-03-01) -
A doubled discretization of Abelian Chern-Simons theory
حسب: Adams, David H.
منشور في: (2013) -
Lattice implementation of Abelian gauge theories with Chern–Simons number and an axion field
حسب: Daniel G. Figueroa, وآخرون
منشور في: (2018-01-01) -
Geometric discretization scheme applied to the Abelian Chern-Simons theory
حسب: Sen, Samik, وآخرون
منشور في: (2013)