Dealing with unreliable annotations: noise-robust network for semantic segmentation through transformer-improved-encoder and convolution-decoder
Conventional deep learning methods have shown promising results in the medical domain when trained on accurate ground truth data. Pragmatically, due to constraints like lack of time or annotator inexperience, the ground truth data obtained from clinical environments may not always be impeccably accu...
প্রধান লেখক: | Wang, Z, Voiculescu, I |
---|---|
বিন্যাস: | Journal article |
ভাষা: | English |
প্রকাশিত: |
Asian Network for Scientific Information
2023
|
অনুরূপ উপাদানগুলি
অনুরূপ উপাদানগুলি
-
Dealing with Unreliable Annotations: A Noise-Robust Network for Semantic Segmentation through A Transformer-Improved Encoder and Convolution Decoder
অনুযায়ী: Ziyang Wang, অন্যান্য
প্রকাশিত: (2023-07-01) -
How good is good enough? Strategies for dealing with unreliable segmentation annotations of medical data
অনুযায়ী: Wang, Z
প্রকাশিত: (2023) -
Research on Transformer Noise Suppression Based on Redundant Convolutional Encoder Decoder
অনুযায়ী: Quanjin XIN, অন্যান্য
প্রকাশিত: (2023-04-01) -
SCENE SEMANTIC SEGMENTATION FROM INDOOR RGB-D IMAGES USING ENCODE-DECODER FULLY CONVOLUTIONAL NETWORKS
অনুযায়ী: Z. Wang, অন্যান্য
প্রকাশিত: (2017-09-01) -
Semantic segmentation with context encoding and multi-path decoding
অনুযায়ী: Ding, Henghui, অন্যান্য
প্রকাশিত: (2022)