Box2Seg: Attention weighted loss and discriminative feature learning for weakly supervised segmentation
We propose a weakly supervised approach to semantic segmentation using bounding box annotations. Bounding boxes are treated as noisy labels for the foreground objects. We predict a per-class attention map that saliently guides the per-pixel cross entropy loss to focus on foreground pixels and refine...
Hlavní autoři: | Kulharia, V, Chandra, S, Agrawal, A, Torr, PHS, Tyagi, A |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Springer International Publishing
2020
|
Podobné jednotky
-
Discovering class-specific pixels for weakly-supervised semantic segmentation
Autor: Chaudhry, A, a další
Vydáno: (2017) -
SegPGD: an effective and efficient adversarial attack for evaluating and boosting segmentation robustness
Autor: Gu, J, a další
Vydáno: (2022) -
Weakly- and semi-supervised panoptic segmentation
Autor: Li, Q, a další
Vydáno: (2018) -
IARS SegNet: Interpretable Attention Residual Skip Connection SegNet for Melanoma Segmentation
Autor: V. Shankara Narayanan, a další
Vydáno: (2024-01-01) -
Polarized Attention Weak Supervised Semantic Segmentation Network
Autor: Min Dai, a další
Vydáno: (2024-01-01)