Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results.
An Adaptive Regularisation algorithm using Cubics (ARC) is proposed for unconstrained optimization, generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981, DAMTP, University of Cambridge), an algorithm by Nesterov and Polyak (Math Program 108(1):177-205, 20...
Hauptverfasser: | Cartis, C, Gould, N, Toint, P |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
2011
|
Ähnliche Einträge
Ähnliche Einträge
-
Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity.
von: Cartis, C, et al.
Veröffentlicht: (2011) -
Adaptive cubic overestimation methods for unconstrained optimization
von: Cartis, C, et al.
Veröffentlicht: (2007) -
Adaptive cubic overestimation methods for unconstrained optimization
von: Cartis, C, et al.
Veröffentlicht: (2007) -
Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization.
von: Cartis, C, et al.
Veröffentlicht: (2012) -
Complexity bounds for second-order optimality in unconstrained optimization.
von: Cartis, C, et al.
Veröffentlicht: (2012)