Bayesian auxiliary variable models for binary and multinomial regression
In this paper we discuss auxiliary variable approaches to Bayesian binary and multinomial regression. These approaches are ideally suited to automated Markov chain Monte Carlo simulation. In the first part we describe a simple technique using joint updating that improves the performance of the conve...
主要な著者: | Holmes, C, Held, L |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2006
|
類似資料
-
Bayesian Auxiliary Variable Models for Binary and Multinomial Regression
著者:: Holmes, C, 等
出版事項: (2006) -
Bayesian Estimation of the Multinomial Logit Model: A Comment on Holmes and Held, "Bayesian Auxiliary Variable Models for Binary and Multinomial Regression" Response
著者:: Holmes, C, 等
出版事項: (2011) -
Bayesian Lasso and multinomial logistic regression on GPU.
著者:: Rok Češnovar, 等
出版事項: (2017-01-01) -
MicroBVS: Dirichlet-tree multinomial regression models with Bayesian variable selection - an R package
著者:: Matthew D. Koslovsky, 等
出版事項: (2020-07-01) -
Taba Binary, Multinomial, and Ordinal Regression Models: New Machine Learning Methods for Classification
著者:: Mohammad Tabatabai, 等
出版事項: (2024-12-01)