Regularized Jacobi iteration for decentralized convex quadratic optimization with separable constraints

We consider multi-agent, convex quadratic optimization programs subject to separable constraints, where the constraint function of each agent involves only its local decision vector, while the decision vectors of all agents are coupled via a common objective function. We focus on a regularized varia...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Deori, L, Margellos, K, Prandini, M
Format: Journal article
Veröffentlicht: IEEE 2018