Rough path metrics on a Besov–Nikolskii-type scale

It is known, since the seminal work [T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998)], that the solution map associated to a controlled differential equation is locally Lipschitz continuous in q-variation, resp., 1/q-H¨older-type metrics on the space of...

Повний опис

Бібліографічні деталі
Автори: Friz, P, Prömel, D
Формат: Journal article
Мова:English
Опубліковано: American Mathematical Society 2017
_version_ 1826282658642001920
author Friz, P
Prömel, D
author_facet Friz, P
Prömel, D
author_sort Friz, P
collection OXFORD
description It is known, since the seminal work [T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998)], that the solution map associated to a controlled differential equation is locally Lipschitz continuous in q-variation, resp., 1/q-H¨older-type metrics on the space of rough paths, for any regularity 1/q ∈ (0, 1]. We extend this to a new class of Besov–Nikolskii-type metrics, with arbitrary regularity 1/q ∈ (0, 1] and integrability p ∈ [q, ∞], where the case p ∈ {q,∞} corresponds to the known cases. Interestingly, the result is obtained as a consequence of known q-variation rough path estimates.
first_indexed 2024-03-07T00:47:10Z
format Journal article
id oxford-uuid:85176163-c1b3-498c-a7fe-1dac15a59ddc
institution University of Oxford
language English
last_indexed 2024-03-07T00:47:10Z
publishDate 2017
publisher American Mathematical Society
record_format dspace
spelling oxford-uuid:85176163-c1b3-498c-a7fe-1dac15a59ddc2022-03-26T21:55:06ZRough path metrics on a Besov–Nikolskii-type scaleJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:85176163-c1b3-498c-a7fe-1dac15a59ddcEnglishSymplectic Elements at OxfordAmerican Mathematical Society2017Friz, PPrömel, DIt is known, since the seminal work [T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998)], that the solution map associated to a controlled differential equation is locally Lipschitz continuous in q-variation, resp., 1/q-H¨older-type metrics on the space of rough paths, for any regularity 1/q ∈ (0, 1]. We extend this to a new class of Besov–Nikolskii-type metrics, with arbitrary regularity 1/q ∈ (0, 1] and integrability p ∈ [q, ∞], where the case p ∈ {q,∞} corresponds to the known cases. Interestingly, the result is obtained as a consequence of known q-variation rough path estimates.
spellingShingle Friz, P
Prömel, D
Rough path metrics on a Besov–Nikolskii-type scale
title Rough path metrics on a Besov–Nikolskii-type scale
title_full Rough path metrics on a Besov–Nikolskii-type scale
title_fullStr Rough path metrics on a Besov–Nikolskii-type scale
title_full_unstemmed Rough path metrics on a Besov–Nikolskii-type scale
title_short Rough path metrics on a Besov–Nikolskii-type scale
title_sort rough path metrics on a besov nikolskii type scale
work_keys_str_mv AT frizp roughpathmetricsonabesovnikolskiitypescale
AT promeld roughpathmetricsonabesovnikolskiitypescale