tt-geometry of Tate motives over algebraically closed fields
We study Tate motives with integral coefficients through the lens of tensor triangular geometry. For some base fields, including the field of algebraic numbers and the algebraic closure of a finite field, we arrive at a complete description of the tensor triangular spectrum and a classification of t...
主要作者: | Gallauer, M |
---|---|
格式: | Journal article |
出版: |
Cambridge University Press
2019
|
相似書籍
-
The finiteness of the Tate–Shafarevich group over function fields for algebraic tori defined over the base field
由: Rapinchuk, Andrei, et al.
出版: (2024-09-01) -
FQHE and tt * geometry
由: Riccardo Bergamin, et al.
出版: (2019-12-01) -
ON THE INTEGRAL HODGE AND TATE CONJECTURES OVER A NUMBER FIELD
由: BURT TOTARO
出版: (2013-01-01) -
tt ∗ geometry of modular curves
由: Riccardo Bergamin
出版: (2019-08-01) -
Tensor triangular geometry of filtered modules
由: Gallauer, M
出版: (2018)