Learning from the ligand: using ligand-based features to improve binding affinity prediction
Machine learning scoring functions for protein-ligand binding affinity prediction have been found to consistently outperform classical scoring functions. Structure-based scoring functions for universal affinity prediction typically use features describing interactions derived from the protein-ligand...
المؤلفون الرئيسيون: | Boyles, F, Deane, C, Morris, G |
---|---|
التنسيق: | Journal article |
منشور في: |
2019
|
مواد مشابهة
-
Learning from the ligand: using ligand-based features to improve binding affinity prediction
حسب: Boyles, F, وآخرون
منشور في: (2019) -
Protein-ligand interaction graphs: Learning from ligand-shaped 3D interaction graphs to improve binding affinity prediction
حسب: Moesser, M, وآخرون
منشور في: (2022) -
Learning from docked ligands: ligand-based features rescue structure-based scoring functions when trained on docked poses
حسب: Boyles, F, وآخرون
منشور في: (2021) -
Prediction of protein-ligand binding affinity with deep learning
حسب: Yuxiao Wang, وآخرون
منشور في: (2023-01-01) -
Learning protein-ligand binding affinity with atomic environment vectors
حسب: Meli, R, وآخرون
منشور في: (2021)