Sparse kernel approximations for efficient classification and detection
Efficient learning with non-linear kernels is often based on extracting features from the data that linearise the kernel. While most constructions aim at obtaining low-dimensional and dense features, in this work we explore high-dimensional and sparse ones. We give a method to compute sparse feature...
Main Authors: | Vedaldi, A, Zisserman, A |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
IEEE
2012
|
Registos relacionados
-
Sparse Kernel Approximations for Efficient Classification and Detection
Por: Vedaldi, A, et al.
Publicado em: (2012) -
Efficient additive kernels via explicit feature maps
Por: Vedaldi, A, et al.
Publicado em: (2012) -
Multiple kernels for object detection
Por: Vedaldi, A, et al.
Publicado em: (2010) -
Multiple Kernels for Object Detection
Por: Vedaldi, A, et al.
Publicado em: (2009) -
Generalized RBF feature maps for efficient detection
Por: Vempati, S, et al.
Publicado em: (2010)