Fast heating of super-solid density plasmas towards laser fusion ignition
We have studied fast heating of highly compressed plasmas using multi 100 TW laser light. Efficient propagation of the ultra-intense laser light and heating of the imploded plasmas were realized with a cone-attached shell target. Energy deposition rate of the ultra-intense laser pulse into high-dens...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2002
|
Summary: | We have studied fast heating of highly compressed plasmas using multi 100 TW laser light. Efficient propagation of the ultra-intense laser light and heating of the imploded plasmas were realized with a cone-attached shell target. Energy deposition rate of the ultra-intense laser pulse into high-density plasmas was evaluated from neutron measurements. Generation and propagation property of energetic electrons in the ultra-intense laser interactions were also investigated with solid density targets. About 40% of the laser energy converted to mega electron volts energetic electrons in the interactions with solid targets at intensities of 1019W cm-2. These electrons propagated in the high-density plasmas with a divergence of 20-30° or jet-like collimation. Taking account of these experimental results, heating laser spot size is optimized for laser fusion ignition with a simple estimation. |
---|