Can the energy bound E ≥ 0 imply supersymmetry?

We utilize the integrality conjecture to show that the torus partition function of a fermionic rational conformal theory in the Ramond-Ramond sector becomes a constant when the bound <i>h<sup>R</sup></i> ≥ <i><sup>c</sup></i>&frasl;<sub>24<...

Full description

Bibliographic Details
Main Authors: Bae, J-B, Duan, Z, Lee, S
Format: Journal article
Language:English
Published: American Physical Society 2023
Description
Summary:We utilize the integrality conjecture to show that the torus partition function of a fermionic rational conformal theory in the Ramond-Ramond sector becomes a constant when the bound <i>h<sup>R</sup></i> ≥ <i><sup>c</sup></i>&frasl;<sub>24</sub> is satisfied, where <i>h<sup>R</sup></i> denotes the conformal weights of Ramond states and <i>c</i> is the central charge. The constant-valued Ramond-Ramond partition function strongly suggests the presence of supersymmetry unless a given theory has free fermions. The lower bound <i>h<sup>R</sup></i> ≥ <i><sup>c</sup></i>&frasl;<sub>24</sub> can then be identified with the unitarity bound of <i>N</i> = 1 supersymmetry. We thus propose that, for rational CFTs without free fermions, (<i>h<sup>R</sup></i> − <i>c</i>/24) ≥ 0 can imply supersymmetry.