Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, com...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Mahajan, A, Taliun, D, Thurner, M, Robertson, N, Torres, J, Rayner, N, Payne, A, Bennett, A, Nylander, V, Lindgren, C, Marchini, J, Gloyn, A, Morris, A, McCarthy, M, al., E
বিন্যাস: Journal article
প্রকাশিত: Springer Nature 2018
_version_ 1826282791386480640
author Mahajan, A
Taliun, D
Thurner, M
Robertson, N
Torres, J
Rayner, N
Payne, A
Bennett, A
Nylander, V
Lindgren, C
Marchini, J
Gloyn, A
Morris, A
McCarthy, M
al., E
author_facet Mahajan, A
Taliun, D
Thurner, M
Robertson, N
Torres, J
Rayner, N
Payne, A
Bennett, A
Nylander, V
Lindgren, C
Marchini, J
Gloyn, A
Morris, A
McCarthy, M
al., E
author_sort Mahajan, A
collection OXFORD
description We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).
first_indexed 2024-03-07T00:49:11Z
format Journal article
id oxford-uuid:85c6768f-5bc8-48b6-ae4b-149d23bd3fb7
institution University of Oxford
last_indexed 2024-03-07T00:49:11Z
publishDate 2018
publisher Springer Nature
record_format dspace
spelling oxford-uuid:85c6768f-5bc8-48b6-ae4b-149d23bd3fb72022-03-26T21:59:45ZFine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome mapsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:85c6768f-5bc8-48b6-ae4b-149d23bd3fb7Symplectic Elements at OxfordSpringer Nature2018Mahajan, ATaliun, DThurner, MRobertson, NTorres, JRayner, NPayne, ABennett, ANylander, VLindgren, CMarchini, JGloyn, AMorris, AMcCarthy, Mal., EWe expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).
spellingShingle Mahajan, A
Taliun, D
Thurner, M
Robertson, N
Torres, J
Rayner, N
Payne, A
Bennett, A
Nylander, V
Lindgren, C
Marchini, J
Gloyn, A
Morris, A
McCarthy, M
al., E
Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
title Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
title_full Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
title_fullStr Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
title_full_unstemmed Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
title_short Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps
title_sort fine mapping type 2 diabetes loci to single variant resolution using high density imputation and islet specific epigenome maps
work_keys_str_mv AT mahajana finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT taliund finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT thurnerm finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT robertsonn finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT torresj finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT raynern finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT paynea finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT bennetta finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT nylanderv finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT lindgrenc finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT marchinij finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT gloyna finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT morrisa finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT mccarthym finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps
AT ale finemappingtype2diabeteslocitosinglevariantresolutionusinghighdensityimputationandisletspecificepigenomemaps