Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
In this paper, we quantify the asymptotic limit of collective behavior kinetic equations arising in mathematical biology modeled by Vlasov-type equations with nonlocal interaction forces and alignment. More precisely, we investigate the hydrodynamic limit of a kinetic Cucker–Smale flocking model wit...
Hlavní autoři: | Carrillo, JA, Choi, Y-P, Jung, J |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
World Scientific Publishing
2021
|
Podobné jednotky
-
Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
Autor: Carrillo de la Plata, JA, a další
Vydáno: (2020) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
Autor: Carrillo, JA, a další
Vydáno: (2021) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
Autor: Bailo, R, a další
Vydáno: (2024) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
Autor: Carrillo de la Plata, JA, a další
Vydáno: (2018) -
Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus
Autor: Carrillo, JA, a další
Vydáno: (2019)