Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
In this paper, we quantify the asymptotic limit of collective behavior kinetic equations arising in mathematical biology modeled by Vlasov-type equations with nonlocal interaction forces and alignment. More precisely, we investigate the hydrodynamic limit of a kinetic Cucker–Smale flocking model wit...
Main Authors: | Carrillo, JA, Choi, Y-P, Jung, J |
---|---|
格式: | Journal article |
语言: | English |
出版: |
World Scientific Publishing
2021
|
相似书籍
-
Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
由: Carrillo de la Plata, JA, et al.
出版: (2020) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
由: Carrillo, JA, et al.
出版: (2021) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
由: Bailo, R, et al.
出版: (2024) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
由: Carrillo de la Plata, JA, et al.
出版: (2018) -
Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus
由: Carrillo, JA, et al.
出版: (2019)