Anti-angiogenesis in cancer therapeutics: the magic bullet

<p><strong>Background:</strong> Angiogenesis is the formation of new vascular networks from preexisting ones through the migration and proliferation of differentiated endothelial cells. Available evidence suggests that while antiangiogenic therapy could inhibit tumour growth, the r...

Full description

Bibliographic Details
Main Authors: Oguntade, AS, Al-Amodi, F, Alrumayh, A, Alobaida, M, Bwalya, M
Format: Journal article
Language:English
Published: Springer 2021
_version_ 1826311337156804608
author Oguntade, AS
Al-Amodi, F
Alrumayh, A
Alobaida, M
Bwalya, M
author_facet Oguntade, AS
Al-Amodi, F
Alrumayh, A
Alobaida, M
Bwalya, M
author_sort Oguntade, AS
collection OXFORD
description <p><strong>Background:</strong> Angiogenesis is the formation of new vascular networks from preexisting ones through the migration and proliferation of differentiated endothelial cells. Available evidence suggests that while antiangiogenic therapy could inhibit tumour growth, the response to these agents is not sustained. The aim of this paper was to review the evidence for anti-angiogenic therapy in cancer therapeutics and the mechanisms and management of tumour resistance to antiangiogenic agents. We also explored the latest advances and challenges in this field.</p> <p><strong>Main body of the abstract:</strong> MEDLINE and EMBASE databases were searched for publications on antiangiogenic therapy in cancer therapeutics from 1990 to 2020. Vascular endothelial growth factor (VEGF) is the master effector of the angiogenic response in cancers. Anti-angiogenic agents targeting the VEGF and HIF-α pathways include monoclonal antibodies to VEGF (e.g. bevacizumab), small-molecule tyrosine kinase inhibitors (TKIs) e.g. sorafenib, decoy receptor or VEGF trap e.g. aflibercept and VEGFR2 inhibitors (e.g. ramucirumab). These classes of drugs are vascular targeting which in many ways are advantageous over tumour cell targeting drugs. Their use leads to a reduction in the tumour blood supply and growth of the tumour blood vessels. Tumour resistance and cardiovascular toxicity are important challenges which limit the efficacy and long-term use of anti-angiogenic agents in cancer therapeutics. Tumour resistance can be overcome by dual anti-angiogenic therapy or combination with conventional chemotherapy and immunotherapy. Emerging nanoparticle-based therapy which can silence the expression of HIF-α gene expression by antisense oligonucleotides or miRNAs has been developed. Effective delivery platforms are required for such therapy.</p> <p><strong>Short conclusion:</strong> Clinical surveillance is important for the early detection of tumour resistance and treatment failure using reliable biomarkers. It is hoped that the recent interest in mesenchymal cell-based and exosome-based nanoparticle delivery platforms will improve the cellular delivery of newer anti-angiogenics in cancer therapeutics.</p>
first_indexed 2024-03-07T08:08:16Z
format Journal article
id oxford-uuid:85e12649-654d-4405-9b6c-8baf37dac1c7
institution University of Oxford
language English
last_indexed 2024-03-07T08:08:16Z
publishDate 2021
publisher Springer
record_format dspace
spelling oxford-uuid:85e12649-654d-4405-9b6c-8baf37dac1c72023-11-08T14:58:29ZAnti-angiogenesis in cancer therapeutics: the magic bulletJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:85e12649-654d-4405-9b6c-8baf37dac1c7EnglishSymplectic ElementsSpringer2021Oguntade, ASAl-Amodi, FAlrumayh, AAlobaida, MBwalya, M<p><strong>Background:</strong> Angiogenesis is the formation of new vascular networks from preexisting ones through the migration and proliferation of differentiated endothelial cells. Available evidence suggests that while antiangiogenic therapy could inhibit tumour growth, the response to these agents is not sustained. The aim of this paper was to review the evidence for anti-angiogenic therapy in cancer therapeutics and the mechanisms and management of tumour resistance to antiangiogenic agents. We also explored the latest advances and challenges in this field.</p> <p><strong>Main body of the abstract:</strong> MEDLINE and EMBASE databases were searched for publications on antiangiogenic therapy in cancer therapeutics from 1990 to 2020. Vascular endothelial growth factor (VEGF) is the master effector of the angiogenic response in cancers. Anti-angiogenic agents targeting the VEGF and HIF-α pathways include monoclonal antibodies to VEGF (e.g. bevacizumab), small-molecule tyrosine kinase inhibitors (TKIs) e.g. sorafenib, decoy receptor or VEGF trap e.g. aflibercept and VEGFR2 inhibitors (e.g. ramucirumab). These classes of drugs are vascular targeting which in many ways are advantageous over tumour cell targeting drugs. Their use leads to a reduction in the tumour blood supply and growth of the tumour blood vessels. Tumour resistance and cardiovascular toxicity are important challenges which limit the efficacy and long-term use of anti-angiogenic agents in cancer therapeutics. Tumour resistance can be overcome by dual anti-angiogenic therapy or combination with conventional chemotherapy and immunotherapy. Emerging nanoparticle-based therapy which can silence the expression of HIF-α gene expression by antisense oligonucleotides or miRNAs has been developed. Effective delivery platforms are required for such therapy.</p> <p><strong>Short conclusion:</strong> Clinical surveillance is important for the early detection of tumour resistance and treatment failure using reliable biomarkers. It is hoped that the recent interest in mesenchymal cell-based and exosome-based nanoparticle delivery platforms will improve the cellular delivery of newer anti-angiogenics in cancer therapeutics.</p>
spellingShingle Oguntade, AS
Al-Amodi, F
Alrumayh, A
Alobaida, M
Bwalya, M
Anti-angiogenesis in cancer therapeutics: the magic bullet
title Anti-angiogenesis in cancer therapeutics: the magic bullet
title_full Anti-angiogenesis in cancer therapeutics: the magic bullet
title_fullStr Anti-angiogenesis in cancer therapeutics: the magic bullet
title_full_unstemmed Anti-angiogenesis in cancer therapeutics: the magic bullet
title_short Anti-angiogenesis in cancer therapeutics: the magic bullet
title_sort anti angiogenesis in cancer therapeutics the magic bullet
work_keys_str_mv AT oguntadeas antiangiogenesisincancertherapeuticsthemagicbullet
AT alamodif antiangiogenesisincancertherapeuticsthemagicbullet
AT alrumayha antiangiogenesisincancertherapeuticsthemagicbullet
AT alobaidam antiangiogenesisincancertherapeuticsthemagicbullet
AT bwalyam antiangiogenesisincancertherapeuticsthemagicbullet