Image retrieval outperforms diffusion models on data augmentation
Many approaches have been proposed to use diffusion models to augment training datasets for downstream tasks, such as classification. However, diffusion models are themselves trained on large datasets, often with noisy annotations, and it remains an open question to which extent these models contrib...
Hlavní autoři: | Burg, MF, Wenzel, F, Zietlow, D, Horn, M, Makansi, O, Locatello, F, Russell, C |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Journal of Machine Learning Research
2023
|
Podobné jednotky
-
Retrieval-augmented human motion generation with diffusion model
Autor: Guo, Xinying
Vydáno: (2023) -
Plant trait retrieval from hyperspectral data: Collective efforts in scientific data curation outperform simulated data derived from the PROSAIL model
Autor: Daniel Mederer, a další
Vydáno: (2025-01-01) -
Paired cross-modal data augmentation for fine-grained image-to-text retrieval
Autor: Wang, Hao, a další
Vydáno: (2023) -
In-Context Retrieval-Augmented Language Models
Autor: Ori Ram, a další
Vydáno: (2023-11-01) -
Art, Artfulness, or Artifice?: A Review of The Art of Statistics: How to Learn From Data, by David Spiegelhalter
Autor: Jason Makansi
Vydáno: (2020-01-01)