Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits

We present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analy...

Fuld beskrivelse

Bibliografiske detaljer
Main Authors: Yang, J, Ferreira, T, Morris, A, Medland, SE, Madden, P, Heath, A, Martin, N, Montgomery, G, Weedon, M, Loos, R, Frayling, T, McCarthy, M, Hirschhorn, J, Goddard, M, Visscher, P
Format: Journal article
Udgivet: 2012
_version_ 1826282875187625984
author Yang, J
Yang, J
Ferreira, T
Morris, A
Medland, SE
Madden, P
Heath, A
Martin, N
Montgomery, G
Weedon, M
Loos, R
Frayling, T
McCarthy, M
McCarthy, M
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Goddard, M
Goddard, M
Visscher, P
Visscher, P
Visscher, P
author_facet Yang, J
Yang, J
Ferreira, T
Morris, A
Medland, SE
Madden, P
Heath, A
Martin, N
Montgomery, G
Weedon, M
Loos, R
Frayling, T
McCarthy, M
McCarthy, M
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Goddard, M
Goddard, M
Visscher, P
Visscher, P
Visscher, P
author_sort Yang, J
collection OXFORD
description We present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analyzed meta-analysis summary data from the GIANT Consortium for height and body mass index (BMI), with the LD structure estimated from genotype data in two independent cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49 additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci. We did not find any locus showing multiple associated SNPs for BMI. The method we present is computationally fast and is also applicable to case-control data, which we demonstrate in an example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium. © 2012 Nature America, Inc. All rights reserved.
first_indexed 2024-03-07T00:50:26Z
format Journal article
id oxford-uuid:8634c9d4-1a9b-4b86-aa05-f5de6a1d00fe
institution University of Oxford
last_indexed 2024-03-07T00:50:26Z
publishDate 2012
record_format dspace
spelling oxford-uuid:8634c9d4-1a9b-4b86-aa05-f5de6a1d00fe2022-03-26T22:02:29ZConditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traitsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:8634c9d4-1a9b-4b86-aa05-f5de6a1d00feSymplectic Elements at Oxford2012Yang, JYang, JFerreira, TMorris, AMedland, SEMadden, PHeath, AMartin, NMontgomery, GWeedon, MLoos, RFrayling, TMcCarthy, MMcCarthy, MHirschhorn, JHirschhorn, JHirschhorn, JHirschhorn, JHirschhorn, JGoddard, MGoddard, MVisscher, PVisscher, PVisscher, PWe present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analyzed meta-analysis summary data from the GIANT Consortium for height and body mass index (BMI), with the LD structure estimated from genotype data in two independent cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49 additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci. We did not find any locus showing multiple associated SNPs for BMI. The method we present is computationally fast and is also applicable to case-control data, which we demonstrate in an example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium. © 2012 Nature America, Inc. All rights reserved.
spellingShingle Yang, J
Yang, J
Ferreira, T
Morris, A
Medland, SE
Madden, P
Heath, A
Martin, N
Montgomery, G
Weedon, M
Loos, R
Frayling, T
McCarthy, M
McCarthy, M
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Hirschhorn, J
Goddard, M
Goddard, M
Visscher, P
Visscher, P
Visscher, P
Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
title Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
title_full Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
title_fullStr Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
title_full_unstemmed Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
title_short Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits
title_sort conditional and joint multiple snp analysis of gwas summary statistics identifies additional variants influencing complex traits
work_keys_str_mv AT yangj conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT yangj conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT ferreirat conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT morrisa conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT medlandse conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT maddenp conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT heatha conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT martinn conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT montgomeryg conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT weedonm conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT loosr conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT fraylingt conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT mccarthym conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT mccarthym conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT hirschhornj conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT hirschhornj conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT hirschhornj conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT hirschhornj conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT hirschhornj conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT goddardm conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT goddardm conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT visscherp conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT visscherp conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits
AT visscherp conditionalandjointmultiplesnpanalysisofgwassummarystatisticsidentifiesadditionalvariantsinfluencingcomplextraits